Braunrothes Mineral	Hellrothes Mineral
SiO_2 5.14	10.27
${ m Al}_2{ m O}_3$ 50.85	49.02
${ m Fe_2O_3}$ 14.36	12.90
$\mathrm{Fe_2O_2}$ 0.35	nicht bestimmt
CaO 0.41	0.62
MgO 0.11	Spur
K_2O 0.09	0.11
Na_2O 0.17	0.20
H ₂ O (beim Glühen) 27.03	25.88
H_2O (bei 100°) . 1.35	0.93
CO_2 Spur	0.26
$P_2 O_5$ 0.48	0.38
100.34	100.57

Betrachtet man die chemische Zusammensetzung des Bauxits und zieht dabei das petrographische Verhalten in Betracht, so dürfte es wohl keinem Zweifel unterliegen, dass derselbe ein, wenn auch wunderbares, Zersetzungsprodukt des Basaltes ist. Durch Verwittern des Plagioklases, Augits und Olivins ist fast alle Kieselsäure, ebenso der grösste Theil des Calciums und Magnesiums, weggeführt, das Eisen oxydirt worden, während Aluminiumhydroxyd, wie aus der Löslichkeit des Bauxits in Salzsäure hervorgeht, sich gebildet hat. Die geringen Mengen des noch vorhandenen Calciums und Magnesiums mögen von später auskrystallisirten Silikaten und den wenigen noch unzersetzten Augiten herrühren. Der Rest der vorgefundenen Kieselsäure ist als Quarz in den Poren auskrystallisirt, und die zahlreichen Krystalle von Magneteisen dürften, bei der Art seiner Lagerstätte, die Abstammung des Bauxit aus dem Basalt ausser Zweifel stellen.

Giessen, Chem. Univ.-Lab. des Prof. Naumann, 1. Dec. 1884.

623. C. Pistor: Ueber die Mineralquelle »Römerbrunnen« bei Echzell in der Wetterau.

(Eingegangen am 15. December.)

Die Römerquelle entspringt am Westabhange des Vogelsgebirges etwa 129 m über dem Spiegel der Nordsee. In einer Entfernung von beiläufig 200 m von den Schwalheimer Höfen, nahe dem linken Horloff-Ufer tritt sie zu Tage aus einer 1.6 m starken Torfschicht, unter welcher sich jüngere Diluvialschichten befinden. Sie durchdringt eine 13 m starke Ablagerung von Basalttuff, sowie Phonolith und basalti-

sches Trümmergestein führende Tuffe. Diesen Schichtungen folgen bis dahin noch nicht durchdrungene, sedimentäre Ablagerungen von Blättersandstein, innerhalb deren anscheinend das der Quelle entströmende Wasser zugeführt wird. Der Quellschacht ist bis zu einer Tiefe von 22.6 m in diesen Sandstein abgeteuft und in den ihn überlagernden thonigen und basaltischen Schichten durch eine Sandsteinummauerung vor etwa eindringendem Tage- und Grundwasser geschützt. Innerhalb der jüngsten dieser Schichtungen, welche für Wasser am durchlässigsten sind, ist diese Sandsteinummauerung überdies noch durch festgestampften Thon mantelartig umgeben. Die Mündung des Quellschachtes ist mit einer Holzfassung versehen, über welche das aufsteigende Wasser in eine kreisförmige, cementirte Rinne gelangt, in welcher Quellabsätze gesammelt werden können. Von hier aus gelangt das Wasser durch ein hölzernes Ueberlaufrohr nach den Sammelbassins. Die Quellmündung kann durch eine kupferne Glocke überdeckt werden, die es ermöglicht, das der Quelle reichlich entströmende kohlensaure Gas aufzusammeln. Die Temperatur des Wassers beträgt nach Messungen mit einem Geissler'schen Normalthermometer 12.30 C.

Der Römerbrunnen gehört zu den sogenannten Säuerlingen, wie die analytische Untersuchung des Wassers darthut.

In 1000 Theilen Wasser fanden sich:

Chlor	•								1.1573
Schwefelsäure									0.0734
Kieselsäure .									0.0900
Kohlensäure, f	rei	uı	nd	hal	bg	ebu	nd	en	3.5600
Salpetersäure									\mathbf{Spur}
Salpetrige Säu	$^{\mathrm{re}}$								\mathbf{Spur}
Eisen									0.0153
Thonerde und	Ei	sei	con	cyd					0.0650
Calciumoxyd									0.6441
Magnesiumoxy	d								0.2943
Natriumoxyd									0.5983
Kaliumoxyd								•	0.0404
Ammoniak .									Spur
Organische Su	bsi	tan	Z						0.0230.

Aus diesen Ergebnissen berechnet sich unter Zuhülfenahme einer weiteren Reihe üblicher Controlbestimmungen folgende Zusammensetzung für das Wasser des Römerbrunnens:

Stoff	Formel	In 1000 Theilen	
Kieselsäure	Si O ₂	0.0900	
Kohlensäure frei	CO_2	2.7910	
Salpetersäure	HNO_3 }	Spur	
Salpetrige Säure	HNO_2)		
Thonerde	$\mathrm{Al}_2\mathrm{O}_3$	0.0450	
Eisencarbonat	$\mathrm{Fe_2}(\mathrm{CO_3})_2$	0.0205	
Magnesiumearbonat	$MgCO_3$	0.5611	
Calciumearbonat	Ca C O ₃	1.0590	
Calciumsulfat	Ca S O ₄	0.1240	
Natriumchlorid	Na Cl	1.6275	
Kaliumchlorid	K Cl	0.0642	
Magnesiumchlorid	$\mathrm{Mg}\mathrm{Cl_2}$	0.1780	
Organische Substanz		0.0230	
Ammoniak	${ m NH_3}$	Spur	

Giessen, Chem. Universitäts-Laborator. des Prof. Naumann, 5. December 1884.

624. K. Wehsarg: Versuche zur Darstellung von Jodpentoxyd aus den Elementen.

(Eingegangen am 15. December.)

Die Bildungswärme des Jodpentoxydes ist positiv, und zwar beträgt dieselbe nach Thomsen 1) $(J_2, O_5) = +44860$ Cal. Es dürfte deshalb eine direkte Verbindung von Jod und Sauerstoff zu Jodpentoxyd erwartet werden. Indess sind bezügliche Versuche Berthelot's 2) zur Vereinigung gescheitert, daher wurde in nachstehend beschriebenen Versuchen mit Zuhilfenahme von Platinasbest und Platinschwamm eine direkte Darstellung von Jodpentoxyd erstrebt.

In einer ersten Versuchsreihe wurde mit Joddampf beladener Sauerstoff durch eine 1.5 cm weite Glasröhre geleitet, in der sich ein 7 bis 8 cm langer Pfropf von Platinasbest befand. Das Ende der Röhre tauchte einige Millimeter tief in vorgelegtes Wasser zur Verdichtung des mit Sauerstoff fortgerissenen Joddampfes. Die Röhre

¹⁾ Diese Berichte VI, 432.

²⁾ Diese Berichte X, 89, und Compt. rend. 84, 1408.